Fix typos in easysync-full-description.tex

pull/2166/head
David Cook 2014-06-01 23:57:20 -05:00
parent 44b1ac2b16
commit 49114d2b7a
1 changed files with 3 additions and 3 deletions

View File

@ -83,7 +83,7 @@ For any two changesets $A$, $B$ such that
\begin{itemize}
\item[] $A=(n_1\rightarrow n_2)[\cdots]$
\item[] $A=(n_2\rightarrow n_3)[\cdots]$
\item[] $B=(n_2\rightarrow n_3)[\cdots]$
\end{itemize}
it is clear that there is a third changeset $C=(n_1\rightarrow n_3)[\cdots]$ such that applying $C$ to a document $X$ yeilds the same resulting document as does applying $A$ and then $B$. In this case, we write $AB=C$.
@ -97,14 +97,14 @@ It is impossible to compute $(XA)B$ because $B$ can only be applied to a documen
This is where \emph{merging} comes in. Merging takes two changesets that apply to the same initial document (and that cannot be composed), and computes a single new changeset that presevers the intent of both changes. The merge of $A$ and $B$ is written as $m(A,B)$. For the Etherpad system to work, we require that $m(A,B)=m(B,A)$.
Aside from what we have said so far about merging, there aremany different implementations that will lead to a workable system. We have created one implementation for text that has the following constraints.
Aside from what we have said so far about merging, there are many different implementations that will lead to a workable system. We have created one implementation for text that has the following constraints.
\section{Follows} \label{follows}
When users $A$ and $B$ have the same document $X$ on their screen, and they proceed to make respective changesets $A$ and $B$, it is no use to compute $m(A,B)$, because $m(A,B)$ applies to document $X$, but the users are already looking at document $XA$ and $XB$. What we really want is to compute $B'$ and $A'$ such that
$$XAB' = XBA' = Xm(A,B)$$
``Following'' computes these $B'$ and $A'$ changesets. The definition of the ``follow'' function $f$ is such that $Af(A,B)=Bf(B,A)=m(A,B)=m(B,A)$. When we computer $f(A,B)$.
``Following'' computes these $B'$ and $A'$ changesets. The definition of the ``follow'' function $f$ is such that $Af(A,B)=Bf(B,A)=m(A,B)=m(B,A)$. When we compute $f(A,B)$
\begin{itemize}
\item Insertions in $A$ become retained characters in $f(A,B)$
\item Insertions in $B$ become insertions in $f(A,B)$